We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




Organic Electrochemical Sensor Detects Metabolites Directly

By HospiMedica International staff writers
Posted on 04 Jul 2018
Low-cost sensors made from semiconducting plastic could be used to diagnose and monitor a wide range of health conditions, claims a new study.

Developed at King Abdullah University of Science and Technology (KAUST; Thuwal, Kingdom of Saudi Arabia), Centre Microélectronique de Provence (CMP; Gardanne, France), and other institutions, the novel sensor is based on the ion-to-electron transducing qualities of an electron-transporting (n-type) all-polymer organic semiconductor, which incorporates hydrophilic side chains to enhance ion transport/injection, as well as to facilitate enzyme conjugation.

The micrometer-scale platform absorbs ions produced during enzymatic reactions, causing it to swell when in contact with body liquids such as sweat, tears, or blood. More...
The result is a selective, sensitive, and fast metabolite sensor. When the sensors are merged into more complex circuits, such as transistors, the signal can be amplified and respond to tiny fluctuations in metabolite concentration, leading to significantly higher sensitivity compared to traditional sensors made of metal electrodes, and without the need for a reference electrode.

Initial tests of the sensors were used to measure levels of lactate, a significant metabolite in cellular metabolic pathways associated with several critical health care conditions. According to the researchers, the sensor can also be easily modified to detect other major metabolites, such as glucose or cholesterol, by incorporating the appropriate enzymes into the platform, with the possible concentration range that the sensor can detect adjusted by changing device geometry. The study was published on June 22, 2018, in Science Advances.

“This is the first time that it's been possible to use an electron accepting polymer that can be tailored to improve communication with the enzymes. It opens up new directions in biosensing, where materials can be designed to interact with a specific metabolite, resulting in far more sensitive and selective sensors,” said lead author chemical engineer Anna Maria Pappa, PhD, of CMP. “An implantable device could allow us to monitor the metabolic activity of the brain in real time under stress conditions, such as during or immediately before a seizure, and could be used to predict seizures or to assess treatment.”

Since the sensor does not consist of metals such as gold or platinum, it can be manufactured at a lower cost and can be easily incorporated in flexible and stretchable substrates, enabling their implementation in wearable or implantable sensing applications.

Related Links:
King Abdullah University of Science and Technology
Centre Microélectronique de Provence


Platinum Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Portable Jaundice Management Device
Nymphaea
Digital X-Ray Detector Panel
Acuity G4
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Miniaturized electric generators based on hydrogels for use in biomedical devices (Photo courtesy of HKU)

Hydrogel-Based Miniaturized Electric Generators to Power Biomedical Devices

The development of engineered devices that can harvest and convert the mechanical motion of the human body into electricity is essential for powering bioelectronic devices. This mechanoelectrical energy... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.