We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




3D Modeling System Accurately Predicts Pediatric Donor Heart Volumes

By HospiMedica International staff writers
Posted on 24 Nov 2015
A new three dimensional (3D) computer modeling system may more accurately identify the best donor heart for a pediatric transplant patient.

To develop the new 3D system, researchers at Arizona State University (ASU; Tempe, USA) and Phoenix Children’s Hospital (AZ, USA) first created a library of 3D reconstructed hearts in healthy children weighing up to 45 kilograms, using magnetic resonance imaging (MRI) and computerized tomography (CT) scans. More...
They then used the virtual library to predict the best donor body weight/heart size correlation needed for pediatric transplant recipients. Concomitantly, they examined before and after images from infants who had already received a heart transplant.

When the researchers compared the post-operative data from the real infants with the virtual transplant images, they found that the 3D imaging system accurately identified an appropriate size heart, validating their findings. The researchers are currently expanding the virtual library to improve prognostic capabilities, thus allowing more effective organ allocation and minimizing the number of otherwise acceptable organs that are ultimately discarded. The study was presented at the annual American Heart Association (AHA) Scientific Sessions, held during November 2015 in Orlando (FL, USA).

“It is critical to optimize the range of acceptable donors for each child. 3D reconstruction has tremendous potential to improve donor size matching,” said lead author and study presenter Jonathan Plasencia, BSc, of the ASU image processing applications lab. “We feel that we now have evidence that 3D matching can improve selection and hope this will soon help transplant doctors, patients, and their parents make the best decision by taking some of the uncertainty out of this difficult situation.”

“Analyzing future transplant cases using 3D matching will allow us to predict the true upper and lower limits of acceptable donor size. The big question is how long it will take to further test the technique and move it into actual use,” concluded Mr. Plasencia, who is a PhD student at ASU. “One day transplant teams may be able to use the 3D process to perform virtual transplants before an actual procedure to rapidly measure a donated heart to ensure a better fit and to reduce the risk of mismatching in pediatric transplants.”

Transplant centers currently assess compatibility of a potential donor heart by comparing the donor weight to the recipient weight, and then picking an upper and lower limit based on the size of the patient’s heart on chest X-ray. But the assessment is not precise and variations in size and volume can have a major effect on the recipient’s outcome.

Related Links:

Arizona State University
Phoenix Children’s Hospital 



Platinum Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
12-Channel ECG
CM1200B
Pulmonary Ventilator
OXYMAG
Exam Table
PF400
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.