Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App





World-First Method for Rapid Isolation and Characterization of COVID-19 Variants

By HospiMedica International staff writers
Posted on 01 Jun 2022

Researchers have developed a methodology that speeds up the process for isolating and characterizing the risks posed by COVID-19 variants of concern. More...

The methodology, which has been shared with the global scientific community through publication in Nature Microbiology, is highly cost-effective, automated, and can be used to measure the effectiveness of therapeutics and scaled to test thousands of samples.

The methodology, called R-20, was developed by researchers from the Kirby Institute at UNSW Sydney (Sydney, Australia) and used to analyze all major circulating viral variants in 2021 that were identified from patients in hotel quarantine. At the end of 2021, it was applied to Australia’s first Omicron samples. The researchers found that the vaccine-induced antibody response to Omicron was 15-20-fold weaker than to the original SARS-CoV-2 strain. The rapid analysis included details of how well the variant evades antibodies and how resilient it is. The results have been cited in Centers for Disease Control and Prevention (CDC) guidelines, World Health Organization (WHO) technical reports and by the Australian Technical Advisory group on Immunization (ATAGI) regarding the use of booster vaccinations.

In order to develop the methodology, the researchers took lessons learned from HIV to develop cells with receptors that viruses ‘like’. They looked at hundreds of different cells to identify ones that would allow the virus to replicate as quickly and effectively as possible. They termed these cells as the ‘canaries in the coal mine’ – because they effectively die in the process of telling the team what each variant is up to. They also allow the team to capture variants of the virus quicker than any other cell culture method, with sensitivities approaching that of a PCR swab test.

Using R-20, the researchers look at viral properties of variants to understand how sick the virus is likely to make the population, as well as how evasive it is to existing vaccines and treatments. Identifying this quickly is crucial to inform public health policies such as vaccination strategies, which therapeutics will still work and advice on mask use to mitigate spread of variants to vulnerable populations such as the elderly.

“What makes our R-20 approach unique is its speed and accuracy,” says Associate Professor Turville who developed the methodology. “The best way to quickly understand how a virus works is to genetically develop a cell with receptors that the virus likes. R-20 uses 'supercharged' cells that allow the virus to replicate four times faster than through any other techniques currently published in the scientific literature.”

Related Links:
UNSW Sydney 


Platinum Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Silver Member
ECG Management System
NEMS Web
X-Ray Meter
Cobia SENSE
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.