We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App





New Algorithm Identifies COVID-19 Patients Who Will Require Intensive Care or Ventilation With 90% Accuracy

By HospiMedica International staff writers
Posted on 25 Nov 2021

A new algorithm can predict how many patients will need intensive COVID-related healthcare. More...

The innovative algorithm developed by researchers from the University of Copenhagen (Copenhagen, Denmark) will help alleviate pressure whenever hospitals are confronted by new waves of COVID. It could provide valuable knowledge when it comes to prioritizing caregivers and ventilators in individual hospitals, and save lives. The algorithm can predict the course of COVID patients' illnesses in relation to how many of them will be highly likely or unlikely to require intensive care or ventilation. This is important for the allocation of staff across hospitals.

The new algorithm is based on health data from 42,526 patients who tested positive for the coronavirus between March 2020 and May 2021. It uses individual patient data, including information about a patient’s gender, age, medications, BMI, whether they smoke or not, blood pressure and more. This allows the algorithm to predict how many patients, within a one-to-fifteen day time frame, will need intensive care in the form of, for example, ventilators and constant monitoring by nurses and doctors.

Traditionally, researchers have used regression models to predict COVID-related hospital admissions. However, these models haven’t taken individual disease histories, age, gender and other factors into account. In fact, the algorithm provides extremely accurate predictions for the likely number of intensive care patients for up to 10 days.

As such, our algorithm has the potential save lives," explained Stephan Lorenzen, a postdoc at the University of Copenhagen’s Department of Computer Science. "We make better predictions than comparable models because we are able to more accurately map the potential need for ventilators and 24-hour intensive care for up to 10 days. Precision decreases slightly beyond that, similar to that of the existing algorithmic models used to predict the course of illness in COVID cases."

Related Links:
University of Copenhagen 


Platinum Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
NEW PRODUCT : SILICONE WASHING MACHINE TRAY COVER WITH VICOLAB SILICONE NET VICOLAB®
REGISTRED 682.9
Medical Monitor
VITALMAX 4100SL
Infant Resuscitator
Easypuff
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.