We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




Physician-Aided AI Enhances Detection of Acute Respiratory Distress Syndrome in Chest X-Rays

By HospiMedica International staff writers
Posted on 14 Apr 2023

Acute respiratory distress syndrome (ARDS) is a highly fatal critical illness, with diagnosis often missed or delayed, resulting in patients not receiving evidence-based care. More...

Researchers have now developed a deep learning algorithm to help doctors identify ARDS more quickly and reliably in chest X-rays.

In a new study, the research team University of Michigan (Ann Arbor, MI, USA) assessed the strengths and weaknesses of the AI model compared to expert physicians and investigated how both could work together to improve ARDS diagnosis and patient outcomes. The team used 414 chest X-rays from adult hospital patients with acute hypoxic respiratory failure, and had the AI model and a group of physicians with expertise in chest X-ray interpretation for ARDS detection work side by side. They evaluated overall performance in ARDS detection, accuracy based on X-ray interpretation difficulty, and the level of AI/physician certainty in their interpretations. The AI model demonstrated a higher overall performance in detecting ARDS findings than physicians. However, the researchers discovered that the AI model outperformed the physicians in interpreting less challenging chest X-rays, while physicians were better at reviewing more difficult ones. In rating their confidences in the chest X-ray interpretation, one was found to be less confident while the other performed better.

The team's analysis suggests that AI and physician expertise could complement each other, potentially reducing ARDS misdiagnosis rates. They tested several strategies in which an AI and physician could collaborate to achieve the best performance. One effective method involved having the AI system review the chest X-ray first and then deferring to physicians if it was uncertain. This approach allowed physicians to review a smaller subset of chest X-rays, reducing workload and allowing them to focus on more challenging cases. Such an approach could ultimately transform care delivery to ARDS patients in the intensive care unit (ICU).

“Understanding how to effectively operationalize AI systems in the ICU is really important,” said study senior author Dr. Michael Sjoding, Associate Director of the Weil Institute and Associate Professor of Pulmonary and Critical Care Medicine. “These systems are becoming more common, but there has not been a lot of work done so far to understand how to bring them to the bedside to help clinicians provide the best care. This work opens the door to a future where AI systems and human experts work together to provide excellent ARDS care to all patients.”

“Because medical decisions are often high stakes, we know that patients and clinicians likely won’t accept completely replacing human expertise with AI algorithms,” added Dr. Negar Farzaneh, a Weil Institute Research Investigator and Data Scientist, as well as lead author on the study. “However, strategies where the model complements a physician’s diagnosis, rather than replaces it, might be a more reasonable alternative. Our work suggests that these collaborations, when optimized, can result in higher diagnostic accuracy and enable patients to receive more consistent care.”

Related Links:
University of Michigan 


Platinum Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Medical Monitor
VITALMAX 4100SL
Pulmonary Ventilator
OXYMAG
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.