We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




Chest X-ray AI Identifies Improper Breathing Tube Placement

By HospiMedica International staff writers
Posted on 31 Jan 2022
An artificial intelligence (AI) algorithm improves critical care management by assessing endotracheal and tracheostomy breathing tube (BT) placement.

The Qure.ai (Mumbai, India) qXR-BT standalone image analysis software is designed to analyze and determine the position of tip of a BT relative to the carina by generating a secondary digital chest X-ray image. More...
It then automates measurements and provides the attending physician with a report on the tube’s positional accuracy in less than one minute. This enables clinicians to identify correct positioning and determine if extra attention is required. The algorithm is vendor-agnostic, and works on both portable and stationary X-ray machines.

The chest X-rays are sent to qXR-BT by means of transmission functions within the user’s picture archiving and communication system (PACS). Upon completion of processing, qXR-BT returns results to the user’s PACS or other user specified radiology software system or database in a PDF output that contains preview images that show segmented structures, outlined with a textual report describing the structures detected. The text report is restricted to the presence or absence of the breathing tubes and the carina as detected by the software.

In addition, qXR-BT outputs a digital imaging and communications in medicine (DICOM) report, which consists of a single complete additional DICOM series for each input scan containing labeled overlays that indicate the location and extent of the segmentable structures, suitable for viewing in the PACS or radiology viewer. qXR-BT uses pre-trained convolutional neural networks (CNNs) to process the images.

“qXR-BT is expected to become a standard feature of any critical care framework, giving residents and junior clinicians more confidence in reliably measuring breathing tube placement in intubated patients,” said Prashant Warier, CEO and Founder of Qure.ai. “Especially in the wake of the COVID-19 pandemic and the need for mechanical ventilation in affected patients, the need for prompt assistance to an overburdened healthcare workforce is paramount.”

Studies have shown that up to 25% of patients intubated outside of the operating room (OR) have misplaced endotracheal tubes, which can lead to severe complications such as hyperinflation, pneumothorax, cardiac arrest, and death. Moreover, up to 45% of ICU patients, including 5-15% of COVID-19 patients, require intensive care surveillance and intubation for ventilatory support.

Related Links:
Qure.ai


Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
Enteral Feeding Pump
SENTINELplus
Exam Table
PF400
Infant Incubator
OKM 801
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.