Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




Artificial Intelligence Accurately Detects Fractures on X-Rays

By HospiMedica International staff writers
Posted on 13 Jan 2022
A new study reveals that artificial intelligence (AI) assistance improves the sensitivity and specificity of radiology readers searching for skeletal fractures.

Researchers at Boston University School of Medicine (BUSM; MA, USA), Stony Brook University (SBU; NY, USA), and other institutions conducted a study of the Gleamer (Paris, France) AI BoneView algorithm, which can detect fractures of the limbs, pelvis, torso, lumbar spine, and rib cage. More...
Six types of readers (radiologists, orthopedic surgeons, emergency physicians, physician assistants, rheumatologists, and family physicians) examined set 480 data sets, both with and without AI BoneView.

The results revealed that using AI assistance helped reduce missed fractures by 29% and increased readers' sensitivity by 16% for a single fracture, and by 30% for exams with more than one fracture, while improving specificity by 5%. The improvement in sensitivity was significant in all locations, but especially in the shoulder, clavicle, and thoracolumbar spine. AI assistance also shortened X-ray reading time by an average of 6.3 seconds per patient. The study was published on December 21, 2021, in Radiology.

“Our AI algorithm can quickly and automatically detect x-rays that are positive for fractures and flag those studies in the system so that radiologists can prioritize reading x-rays with positive fractures,” said corresponding author Professor Ali Guermazi, MD, PhD, of BUSM. “The system also highlights regions of interest with bounding boxes around areas where fractures are suspected. This can potentially contribute to less waiting time at the hospital or clinic before patients can get a positive diagnosis of fracture.”

Missed fractures on radiographs are one of the most common causes of diagnostic discrepancies between initial interpretations by non-radiologists or residents and the final read by board-certified radiologists, leading to preventable harm or delay in care to the patient. In addition, inconsistencies in radiographic diagnosis of fractures are more common during the evening and overnight hours, likely related to non-expert reading and fatigue. In patients with multiple traumas, the proportion of missed injuries, including fractures, can be high on the forearm and hands (6.6%) and feet (6.5%).

Related Links:
Boston University School of Medicine
Stony Brook University
Gleamer



Platinum Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
12-Channel ECG
CM1200B
Cardiograph Device
PageWriter TC35
Silver Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.