Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




Automated AI Reads Electronic Health Records

By HospiMedica International staff writers
Posted on 22 Sep 2021
A new study shows how an artificial intelligence (AI)-based algorithm can read electronic health record (EHR) data to identify certain diseases.

The Phe2vec algorithm, developed by researchers at the Icahn School of Medicine at Mount Sinai (MSSM; New York, NY, USA) and the University of Potsdam (Germany), uses unsupervised machine learning (ML) to derive conceptual relationships between EHR data and a host of known diseases. More...
The algorithm relies on embedding previous algorithms, developed by other researchers (such as linguists), to study word networks in various languages.

To test its performance, Phe2vec attempted to identify the diagnoses of nearly two million patients whose data was stored in the MSSM EHR. Results showed that for nine out of ten diseases tested, the system was as effective as, or even slightly better than, the gold standard manual phenotyping process, correctly identifying diagnoses of dementia, multiple sclerosis, and sickle cell anemia, among others. The study was published on September 2, 2021, in Patterns.

“There continues to be an explosion in the amount and types of data electronically stored in a patient’s medical record. Disentangling this complex web of data can be highly burdensome,” said senior author Benjamin Glicksberg, PhD, of the MSSM Hasso Plattner Institute for Digital Health (HPIMS). “Phe2vec aims to contribute to the next generation of clinical systems that use machine learning to offer a more holistic way to examine disease complexity and to improve clinical practice and medical research.”

Currently, scientists rely on a system called the Phenotype Knowledgebase (PheKB) to mine medical records for new information. To study a disease, researchers first have to comb through reams of medical records looking for pieces of data, such as certain lab tests or prescriptions, which are uniquely associated with the disease. They then program an algorithm to search for patients who have those disease-specific pieces of data (the phenotype). Each time researchers want to study a new disease, they have to restart this process from scratch.

Related Links:

Icahn School of Medicine at Mount Sinai
University of Potsdam


Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Pulmonary Ventilator
OXYMAG
Blood Bank Refrigerator
MBR-705GR-PE
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.