Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




New AI-based Method Detects Brain Response to MS Treatment

By HospiMedica International staff writers
Posted on 06 Jul 2019
Researchers at University College London {(UCL), London, UK} and King's College London {(KCL) London, UK} have developed a new artificial intelligence (AI)-based method for detecting the brain's response to treatment in multiple sclerosis (MS). More...
The new method has substantially higher sensitivity than conventional, radiologist-derived measures permit.

The researchers studied patients with relapsing–remitting MS who were treated with the disease-modifying drug natalizumab, where serial magnetic resonance imaging (MRI) scans were available before and after initiation of treatment. The team used machine vision to extract an "imaging fingerprint" of the state of the brain from each scan, capturing detailed changes in white and grey matter and yielding a rich set of regional trajectories over time.

In comparison to the conventional analysis of the traditional measures of total lesion and grey matter volume that a radiologist is able to extract, the AI-assisted modeling of the complex imaging fingerprints was able to discriminate between pre- and post-treatment trajectories of change with much higher accuracy. The study demonstrated that AI can be used to detect brain imaging changes in treated MS with greater sensitivity than measures simple enough to be quantified by radiologists, enabling "superhuman" performance in the task. The approach could be used to guide therapy in individual patients, detect treatment success or failure faster, and to conduct trials of new drugs more effectively and with smaller patient cohorts.

Dr. Parashkev Nachev from UCL Queen Square Institute of Neurology who led the study, said, "Rather than attempting to copy what radiologists do perfectly well already, complex computational modeling in neurology is best deployed on tasks human experts cannot do at all: to synthesize a rich multiplicity of clinical and imaging features into a coherent, quantified description of the individual patient as a whole. This allows us to combine the flexibility and finesse of a clinician with the rigor and objectivity of a machine."

Related Links:
University College London
King's College London


Platinum Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Medical Monitor
VITALMAX 4100SL
Silver Member
ECG Management System
NEMS Web
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.