Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




New AI Tool Helps Detect Brain Aneurysms On CT Angiography Exams

By HospiMedica International staff writers
Posted on 24 Jun 2019
Researchers from Stanford University (Stanford, CA, USA) have developed an artificial intelligence (AI) tool that can help radiologists improve their diagnoses of brain aneurysms by highlighting the areas of a brain scan that are likely to contain an aneurysm.

To overcome the inherent challenges of complex neurovascular anatomy and potential fatal outcome of a missed aneurysm, the researchers focused on creating an AI tool that could accurately process large stacks of 3D images and complement clinical diagnostic practice. More...
The tool is built around an algorithm called HeadXNet which was trained by outlining clinically significant aneurysms detectable on 611 computed tomography (CT) angiogram head scans. The researchers focused on its ability to identify the presence aneurysms rather than on detecting their absence.

Following the training, the algorithm decides for each voxel of a scan whether there is an aneurysm present. As a result of the HeadXNet tool, the algorithm’s conclusions overlaid as a semi-transparent highlight on top of the scan. This representation of the algorithm’s decision allows clinicians to also see what the scans look like without HeadXNet’s input. HeadXNet was tested by eight clinicians who evaluated a set of 115 brain scans for aneurysm, once with the help of HeadXNet and once without. With the tool, the clinicians correctly identified more aneurysms, thereby reducing the “miss” rate, and were more likely to agree with one another. HeadXNet did not influence the time it took for the clinicians to decide on a diagnosis or their ability to correctly identify scans without aneurysms.

“There’s been a lot of concern about how machine learning will actually work within the medical field,” said Allison Park, a Stanford graduate student in statistics and co-lead author of the paper published in JAMA Network Open. “This research is an example of how humans stay involved in the diagnostic process, aided by an artificial intelligence tool.”

HeadXNet’s success in these experiments is promising and the machine learning methods at its heart could likely be trained to identify other diseases inside and outside the brain. For example, the researchers imagine a future version could focus on speeding up identifying aneurysms after they have burst, saving precious time in an urgent situation. However, the researchers have cautioned that further investigation is needed to evaluate generalizability of the AI tool prior to real-time clinical deployment due to differences in scanner hardware and imaging protocols across different hospital centers.

“Because of these issues, I think deployment will come faster not with pure AI automation, but instead with AI and radiologists collaborating,” said Andrew Ng, adjunct professor of computer science and co-senior author of the paper who leads Stanford’s Machine Learning Group. “We still have technical and non-technical work to do, but we as a community will get there and AI-radiologist collaboration is the most promising path.”

Related Links:
Stanford University


Platinum Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Pulmonary Ventilator
OXYMAG
Silver Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.