Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




AI More Accurate at Predicting Heart Attacks than Physicians

By HospiMedica International staff writers
Posted on 18 May 2019
Researchers from the Turku PET Centre (Turku, Finland) have developed an algorithm that “learned” how imaging data interacts by repeatedly analyzing 85 variables in 950 patients with known six-year outcomes. More...
The algorithm then identified patterns correlating the variables to death and heart attack with more than 90% accuracy.

Doctors use risk scores to make treatment decisions, although these scores are based on just a handful of variables and often have modest accuracy in individual patients. Through repetition and adjustment, machine learning can exploit large amounts of data and identify complex patterns that may not be evident to humans.

For the study, the researchers enrolled 950 patients with chest pain who underwent the centre’s usual protocol to look for coronary artery disease. A coronary computed tomography angiography (CCTA) scan yielded 58 pieces of data on presence of coronary plaque, vessel narrowing, and calcification. Those with scans suggestive of disease underwent a positron emission tomography (PET) scan, which produced 17 variables on blood flow.

Ten clinical variables were obtained from medical records including sex, age, smoking and diabetes. During an average six-year follow-up there were 24 heart attacks and 49 deaths from any cause. The 85 variables were entered into a machine-learning algorithm called LogitBoost, which analyzed them over and over again until it found the best structure to predict who had a heart attack or died.

The predictive performance using the ten clinical variables alone (similar to current clinical practice) was modest, with an area under the curve (AUC) of 0.65 (where 1.0 is a perfect test and 0.5 is a random result). When PET data were added, AUC increased to 0.69. The predictive performance increased significantly (p=0.005) when CCTA data were added to clinical and PET data, giving an AUC 0.82 and more than 90% accuracy.

“Our study shows that very high dimensional patterns are more useful than single dimensional patterns to predict outcomes in individuals and for that we need machine learning,” said study author Dr. Luis Eduardo Juarez-Orozco. “Doctors already collect a lot of information about patients – for example those with chest pain. We found that machine learning can integrate these data and accurately predict individual risk. This should allow us to personalize treatment and ultimately lead to better outcomes for patients.”

Related Links:
Turku PET Centre


Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
Electrode Solution and Skin Prep
Signaspray
Infant Incubator
OKM 801
Gynecological Examination Chair
arco-matic
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.