We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




AI Improves X-Ray Identification of Pacemakers

By HospiMedica International staff writers
Posted on 09 Apr 2019
Artificial intelligence (AI) software can help determine the make and model of implanted cardiac rhythm devices (CRDs) more accurately and quickly than current methods, according to a new study.

The software, developed at Imperial College London (Imperial; United Kingdom), will help emergency staff do away with current approaches to determine the model of a pacemaker or defibrillator, which involves comparing a CRD’s radiographic appearance with a manual flow chart. More...
For the study, the researchers extracted the radiographic images of 45 CRD models from five manufacturers. A convolutional neural network (CNN) was then developed using a training set of 1,451 images. The CNN was then tested on a set contained an additional 225 images, consisting of five examples of each model.

The network’s ability to identify the manufacturer of a device was then compared to cardiologists using a flowchart. The results showed the CNN was 99.6% accurate in identifying the manufacturer of a device, and 96.4% accurate in identifying the model group. Among the five cardiologists who used the flowchart, median identification of manufacturer accuracy was 72%, and model group identification was not possible. The study was published on March 27, 2019, in JACC: Clinical Electrophysiology.

“Pacemakers and defibrillators have improved the lives of millions of patients. However, in some rare cases these devices can fail and patients can deteriorate as a result. In these situations, clinicians must quickly identify the type of device a patient has so they can provide treatment such as changing the device's settings or replacing the leads,” said lead author James Howard, MD. “Unfortunately, current methods are slow and outdated, and there is a real need to find new and improved ways of identifying devices during emergency settings.”

CNN’s use a cascade of many layers of nonlinear processing units for feature extraction and transformation, with each successive layer using the output from the previous layer as input to form a hierarchical representation.

Related Links:
Imperial College London


Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
Electrode Solution and Skin Prep
Signaspray
Morcellator
TCM 3000 BL
X-Ray System
Leonardo DR mini III
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Miniaturized electric generators based on hydrogels for use in biomedical devices (Photo courtesy of HKU)

Hydrogel-Based Miniaturized Electric Generators to Power Biomedical Devices

The development of engineered devices that can harvest and convert the mechanical motion of the human body into electricity is essential for powering bioelectronic devices. This mechanoelectrical energy... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.