Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




Artificial Intelligence Could Help Reduce Gadolinium Dose in MRI

By HospiMedica International staff writers
Posted on 18 Dec 2018
Researchers from Stanford University (Stanford, CA, USA) are using artificial intelligence (AI) to reduce the dose of a contrast agent that may be left behind in the body after MRI exams.

Gadolinium is a heavy metal used in contrast material that enhances MRI images. More...
Recent studies have found that trace amounts of the metal remain in the bodies of people who have undergone exams with certain types of gadolinium. The effects of this deposition are not yet known, although radiologists are working to optimize patient safety while simultaneously preserving the important information provided by gadolinium-enhanced MRI scans. The Stanford researchers have been doing this by studying deep learning, a sophisticated AI technique that teaches computers by examples. By using models called convolutional neural networks, computers can recognize images as well as find subtle distinctions among the imaging data that a human observer might be incapable of discerning.

In order to train the deep learning algorithm, the researchers used MR images from 200 patients who had received contrast-enhanced MRI exams for various indications. They collected three sets of images for each patient: pre-contrast scans, done prior to contrast administration and referred to as the zero-dose scans; low-dose scans, acquired after 10% of the standard gadolinium dose administration; and full-dose scans, acquired after 100% dose administration. The algorithm learned to approximate the full-dose scans from the zero-dose and low-dose images. Neuroradiologists then evaluated the images for contrast enhancement and overall quality.

The results showed that the image quality was not significantly different between the low-dose, algorithm-enhanced MR images and the full-dose, contrast-enhanced MR images. The initial results also demonstrated the potential for creating the equivalent of full-dose, contrast-enhanced MR images without any contrast agent use. These findings suggest the method’s potential for dramatically reducing gadolinium dose without sacrificing diagnostic quality. Future research in the clinical setting will focus on evaluation of the algorithm across a broader range of MRI scanners and with different types of contrast agents.

“Low-dose gadolinium images yield significant untapped clinically useful information that is accessible now by using deep learning and AI,” said study lead author Enhao Gong, Ph.D., researcher at Stanford University. “We’re not trying to replace existing imaging technology. We’re trying to improve it and generate more value from the existing information while looking out for the safety of our patients.”

Related Links:
Stanford University


Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
Enteral Feeding Pump
SENTINELplus
Blood Bank Refrigerator
MBR-705GR-PE
PACS Workstation
PaxeraView PRO
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.