We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




Smart Implantable Device Changes Shape to Maintain Drug Dosage

By HospiMedica International staff writers
Posted on 31 Aug 2023

Implantable medical devices offer the potential for revolutionary therapeutic solutions in healthcare, such as insulin release for diabetes treatment. However, a significant hurdle to these devices is the body's response to foreign objects. Now, a new breakthrough in medical device technology facilitated by the use of soft robotics advances the potential for implantable devices to remain inside a patient's body for prolonged periods, enabling long-term therapeutic treatment. This innovation closely resembles a therapeutic implant equipped with the capability to sense its environment and react as required using artificial intelligence (AI). This development could revolutionize implantable drug delivery for various chronic diseases.

Research teams at University of Galway (Galway, Ireland) and Massachusetts Institute of Technology (MIT, Cambridge, MA, USA) have developed an intelligent device that is capable of sensing its surroundings and adapting itself for releasing drugs as needed, even in the presence of surrounding scar tissue. This smart implantable device is adept at administrating drugs, while simultaneously bypassing scar tissue build up and monitoring the body's response, as well as adjusting its shape to maintain precise drug dosing with the use of AI. The technology could pave the way for intelligent, long-term, tailored treatment for patients by combining soft robotics with AI.

Initially, the research team developed flexible devices, known as soft robotic implants, to enhance drug delivery and reduce fibrosis. While successful, these devices were seen as one-size-fits-all solutions, disregarding individual patient needs and the progressive nature of fibrosis. In their latest research, the team significantly enhanced this technology through AI integration, making it responsive to the implant surroundings. This adaptability holds promise for extending device longevity by countering the body's natural characteristic to reject foreign entities.

In order to tackle the challenge of scar tissue formation, the research team harnessed an emerging technique called mechanotherapy. Soft robotic implants make regular movements within the body, preventing scar tissue accumulation by performing actions such as inflation and deflation. A key aspect of the advanced implantable device is a conductive porous membrane capable of detecting blockages caused by scar tissue. This detection mechanism identifies blocked pores through disruptions in electrical signals passing through the membrane, triggered by cells and their secretions. The researchers believe that their medical device breakthrough could usher in independent closed-loop implants that not only reduce fibrotic encapsulation but also continually sense and intelligently adjust drug release activity in response.

“The device worked out the best regime to release a consistent dose, by itself, even when significant fibrosis was simulated,” said Professor Garry Duffy, Professor of Anatomy and Regenerative Medicine at University of Galway, and senior author on the study. “We showed a worst-case scenario of very thick and dense scar tissue around the device and it overcame this by changing how it pumps to deliver medication. We could finely control the drug release in a computational model and on the bench using soft robotics, regardless of significant fibrosis.”

“If we can sense how the individual’s immune system is responding to an implanted therapeutic device and modify the dosing regime accordingly, it could have great potential in personalized, precision drug delivery, reducing off-target effects and ensuring the right amount of drug is delivered at the right time. The work presented here is a step towards that goal,” added Professor Ellen Roche, Professor of Mechanical Engineering at MIT.

Related Links:
University of Galway
MIT 

Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
Enteral Feeding Pump
SENTINELplus
Xenon Light Source
CLV-S400
Morcellator
TCM 3000 BL
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.