We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




AI-Guided Screening Uses ECG Data to Detect Hidden Risk Factor for Stroke

By HospiMedica International staff writers
Posted on 29 Sep 2022

Atrial fibrillation is an irregular heartbeat that can lead to blood clots that may travel to the brain and cause a stroke, but it is largely underdiagnosed. Electrocardiograms (ECGs) are commonly performed for a variety of diagnostics, but since atrial fibrillation can be fleeting, the chance of catching an episode on a single 10-second ECG tracing is low. Patients can undergo continuous or intermittent cardiac monitoring approaches that have higher detection rates, but they are too resource-intensive to apply to everyone and can be burdensome and expensive for patients. Now, researchers using artificial intelligence (AI) to evaluate patients’ ECGs in a targeted strategy to screen for atrial fibrillation found that AI identified new cases that would not have come to clinical attention during routine care.

In the digitally-enabled, decentralized study, researchers at Mayo Clinic (Rochester, MN, USA) enrolled 1,003 patients for continuous monitoring and used another 1,003 patients from usual care as real-world controls. The findings showed that AI can indeed identify a subgroup of high-risk patients who would benefit more from further intensive heart monitoring to detect atrial fibrillation, supporting an AI-guided targeted screening strategy. Earlier research had already developed an AI algorithm to identify patients with a high likelihood of previously unknown atrial fibrillation. The algorithm for detecting atrial fibrillation in normal sinus rhythm from an ECG is licensed to Anumana Inc. (Cambridge, MA, USA) and can identify patients who, even though they are in normal rhythm on the day of the ECG, may have an increased risk of undetected episodes of atrial fibrillation at other times. Such patients can then undergo additional monitoring to confirm the diagnosis.

"We believe that atrial fibrillation screening has great potential, but currently the yield is too low and the cost is too high to make widespread screening a reality," says Peter Noseworthy, M.D., a cardiac electrophysiologist at Mayo Clinic and lead author of the study. "This study demonstrates that an AI-ECG algorithm can help target screening to patients who are most likely to benefit."

"The study shows that an AI algorithm can select a subgroup of older adults who might benefit more from intensive monitoring. If this new strategy is broadly implemented, it could reduce undiagnosed atrial fibrillation, and prevent stroke and death in millions of patients across the globe," added Xiaoxi Yao, Ph.D., a health outcomes researcher in the Department of Cardiovascular Medicine and the Mayo Clinic Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery and senior author of the study.

Related Links:
Mayo Clinic 
Anumana Inc. 

Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
Ultrasound System
FUTUS LE
OR Table Accessory
Angular Accessory Rail
Silver Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Miniaturized electric generators based on hydrogels for use in biomedical devices (Photo courtesy of HKU)

Hydrogel-Based Miniaturized Electric Generators to Power Biomedical Devices

The development of engineered devices that can harvest and convert the mechanical motion of the human body into electricity is essential for powering bioelectronic devices. This mechanoelectrical energy... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.