We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




Microneedle Array Patch Pierces Bacterial Biofilms

By HospiMedica International staff writers
Posted on 12 Oct 2021
A flexible polymer composite microneedle array bypasses biofilm in chronic wounds to deliver both oxygen and bactericidal agents simultaneously.

The polymeric microneedles, developed at Purdue University (Lafayette, IN, USA) and Virginia Polytechnic Institute and State University (Virginia Tech; Blacksburg, USA), are manufactured by ultraviolet (UV) polymerization of flexible polyethylene terephthalate, which conformably attaches to the human body. Containing calcium peroxide and polyvinylpyrrolidone, the microneedle array can effectively elevate oxygen levels from 8 to 12 ppm, as well as provide strong bactericidal effects on both liquid and biofilm bacteria cultures, commonly found in dermal wounds.

Results from an ex-vivo assay study on a porcine wound model showed successful insertion of the biodegradable microneedles into the tissue, while also providing effective bactericidal properties against both Gram-positive and Gram-negative microbes within the complex tissue matrix. The microneedles also demonstrated high levels of cytocompatibility, with less than 10% of apoptosis throughout six days of continuous exposure to human dermal fibroblast cells. The study was published on July 19, 2021, in ACS Applied Bio Materials.

“Bacteria biofilm acts as a shield, hindering antibiotics from reaching infected cells and tissues. The traditional method to bypass biofilm is for physicians to peel it off, which is painful to patients and doesn't discriminate unhealthy tissue from healthy tissue,” said senior author Rahim Rahimi, PhD, of the Purdue School of Materials Engineering. “A flexible microneedle array can provide a better approach for increasing the effectiveness of topical tissue oxygenation as well as the treatment of infected wounds with intrinsically antibiotic resistant biofilms.”

Chronic non-healing wounds, such as diabetic foot ulcer (DFU), are colonized by bacteria that often develop into biofilms that act as a physicochemical barrier to therapeutics and tissue oxygenation, leading to chronic inflammation and tissue hypoxia. Although wound debridement and vigorous mechanical abrasion techniques are often used by clinicians to manage and remove biofilms from wound surfaces, such methods are highly nonselective and painful.

Related Links:
Purdue University
Virginia Polytechnic Institute and State University



Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
Enteral Feeding Pump
SENTINELplus
Blood Bank Refrigerator
MBR-705GR-PE
Critical Care Conversion Kit
Adapter+
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Miniaturized electric generators based on hydrogels for use in biomedical devices (Photo courtesy of HKU)

Hydrogel-Based Miniaturized Electric Generators to Power Biomedical Devices

The development of engineered devices that can harvest and convert the mechanical motion of the human body into electricity is essential for powering bioelectronic devices. This mechanoelectrical energy... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.