We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




Soft Supercapacitor Could Power Implantable Devices

By HospiMedica International staff writers
Posted on 28 Nov 2023

The field of bioelectronic devices is rapidly advancing, offering new possibilities for health monitoring and the treatment of diseases. More...

A critical aspect of these devices is their power source. Now, researchers have made a significant breakthrough by developing a novel way to power implantable devices using a supercapacitor. This technology differs from traditional batteries, which store chemical energy. Supercapacitors, on the other hand, store electrical energy directly, offering advantages in terms of flexibility and weight.

The soft, implantable supercapacitor that can power implantable devices was developed by a team of bioengineers from China in collaboration with researchers at Pennsylvania State University (University Park, PA, USA). In order to be used for powering implantable devices, a supercapacitor must be biodegradable as well as harmless to the patient as it degrades. The newly developed soft, implantable supercapacitor is unique because every component is biodegradable and safe for the patient as it breaks down. The design includes a zinc foil as the anode, molybdenum sulfide as the cathode, and an alginate gel serving as the electrolyte. For wireless charging, a magnesium coil is placed on the skin above where the supercapacitor is implanted in the body.

Prior to its application, the supercapacitor underwent rigorous testing to ensure its degradation remained within safe health limits. It was then paired with a previously developed implantable medication dispenser, also biodegradable, for a practical test. The combined device was implanted in mice with fever induced by yeast infections. The medication was dispensed by the device, leading to a noticeable reduction in the severity of the fevers in the mice treated. While these initial results are promising, the researchers recognize that further work is needed before this technology is ready for human use. For instance, they have yet to develop a mechanism to deactivate the supercapacitor after its intended use. This highlights the ongoing journey in bioelectronics towards creating efficient, safe, and patient-friendly implantable devices.

Related Links:
Pennsylvania State University


Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Isolation Stretcher
IS 736
Morcellator
TCM 3000 BL
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.