We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




Implantable Neuro-Chip Uses Machine Learning Algorithm to Detect and Treat Neurological Disorders

By HospiMedica International staff writers
Posted on 31 Jan 2023

Using a combination of low-power chip design, machine learning algorithms, and soft implantable electrodes, researchers have produced a neural interface that can identify and suppress symptoms of different types of neurological disorders. More...

NeuralTree, a closed-loop neuromodulation system-on-chip, developed by researchers at EPFL (Lausanne, Switzerland) can detect and alleviate disease symptoms. By utilizing a 256-channel high-resolution sensing array and an energy-efficient machine learning processor, the system can extract and classify a wide range of biomarkers from real patient data and animal models of disease in-vivo, resulting in highly accurate prediction of symptoms. NeuralTree works by extracting neural biomarkers – patterns of electrical signals believed to be associated with specific neurological disorders – from brain waves. It classifies the signals and indicates the possibility of an approaching epileptic seizure or Parkinsonian tremor, for instance. Upon detection of a symptom, a neurostimulator located on the chip becomes activated and sends out an electrical pulse to block it.

NeuralTree’s unique design provides the highest levels of efficiency and versatility as compared to the state-of-the-art. The chip features 256 input channels, as compared to 32 for previous machine-learning-embedded devices, enabling the implant to process more high-resolution data. The chip’s area-efficient design makes it extremely small (3.48mm2), creating significant potential for scalability to additional channels. The integrated ‘energy-aware’ learning algorithm that penalizes features consuming a lot of power also makes NeuralTree extremely energy efficient.

The system can also detect a wider range of symptoms than other devices, which focus mainly on the detection of epileptic seizures. The researchers trained the chip’s machine learning algorithm on datasets from both epilepsy and Parkinson’s disease patients, and accurately classified pre-recorded neural signals from both the categories. With the aim of making neural interfaces more intelligent for more effective disease control, the researchers are already looking ahead to innovate further. As a next step, the team plans to enable on-chip algorithmic updates in order to keep up with the evolution of neural signals.

“To the best of our knowledge, this is the first demonstration of Parkinsonian tremor detection with an on-chip classifier,” said Mahsa Shoaran of the Integrated Neurotechnologies Laboratory in the School of Engineering. “Eventually, we can use neural interfaces for many different disorders, and we need algorithmic ideas and advances in chip design to make this happen.”

Related Links:
EPFL


Platinum Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
Electrode Solution and Skin Prep
Signaspray
PACS Workstation
PaxeraView PRO
X-Ray Meter
Cobia SENSE
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.