We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




Needle-Like Flexible Imaging Endoscope Could Improve Biopsies

By HospiMedica International staff writers
Posted on 22 Sep 2022

Flexible graded index (GRIN) lens, originally developed for the telecommunications industry, are commonly used to perform fluorescence microscopy approaches that can image deep into tissues. More...

However, the fact that they are rigid components has limited their use clinically. GRIN lenses are silica glass rods with a continuously changing refractive index that focuses light coming through the rod without requiring a separate focusing lens. Since their development about 50 years ago, it has been generally thought that GRIN lenses can only be used as rigid imaging probes. Now, researchers have created a flexible needle-like endoscopic imaging probe that can acquire 3D microscopic images of tissue with its bendability made possible by a new GRIN lens.

The new GRIN lens was developed and incorporated into an endoscopy probe by researchers at the Harvard Medical School (Boston, MA, USA). Experiments showed that the probe’s imaging properties are maintained even when it is bent. In order to explore if it was possible to image through a bent GRIN lens, the researchers custom-designed a GRIN lens 500 microns in diameter and about 100 mm long. The lens’ long, thin shape and its lack of a rigid outer casing give it the flexibility to bend about 10 degrees without breaking. They then incorporated the new GRIN lens into an endoscopic imaging probe and tested it by performing two-photon 3D fluorescence imaging through it.

To simulate the real-world bending that would be experienced deep inside tissues, the lens was positioned vertically and pushed to introduce the type of beam deflection that would be experienced if the probe was used in the working channel of a needle used for a biopsy. The experiment showed that the resolution and signal level did not obviously deteriorate when one end of the probe was displaced laterally by 6 mm. Although further development and testing would be needed to bring the endoscope into the clinic, the device is already finding applications in biomedical research. The researchers are pairing the endoscope with a new type of microdevice to test a method for quickly evaluating the effectiveness of various cancer therapies.

The team’s new microdevices are designed to be implanted directly into a tumor and carry small amounts of up to 20 drugs. To measure the effectiveness of the various drugs without removing any tumor tissue, the researchers insert a GRIN-based endoscope directly into the microdevice where it can be used to image fluorescence signals inside the tumor. Although this setup is currently being studied in mice, it could eventually be used in patients to quickly figure out which treatment options are best for fighting each patient’s specific tumor. To move the probes toward clinical application, the researchers are also working to develop longer bendable GRIN lenses to allow deeper imaging and more flexibility. They also want to enhance the mechanical durability of the optical components using a thin polymer coating that won’t affect flexibility.

“When a traditional biopsy is performed, it represents a single moment in time and can take days to get results back from the laboratory,” said research lead Guigen Liu from Harvard Medical School. “Our bendable imaging probes could shorten the waiting time to minutes and enable new approaches that use imaging to dynamically monitor tissue changes, for instance, how tumors react to treatments over time.”

“The bendable nature of these GRIN probes makes measurements in living subjects, such as animals or human patients, much more streamlined and practical,” added Liu. “It could be useful for precise, minimally invasive microscopy-guided placement of needles and catheters for tissue biopsies and tumor ablation, for example.”

Related Links:
Harvard Medical School 


Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
OR Table Accessory
Angular Accessory Rail
Cardiograph Device
PageWriter TC35
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.