We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




Ultrasound Imaging Non-Invasively Tracks Tumor Response to Radiation and Immunotherapy

By HospiMedica International staff writers
Posted on 19 Feb 2025

While immunotherapy holds promise in the fight against triple-negative breast cancer, many patients fail to respond to current treatments. More...

A major challenge has been predicting and monitoring how individual tumors react to therapy, with the significant heterogeneity observed across patients complicating the process. Researchers have now identified a promising non-invasive method to track how tumors respond to radiation and immunotherapy, using the body’s own immune system to combat cancer. A groundbreaking study, published in Theranostics, shows how ultrafast power Doppler ultrasound (US) can offer valuable insights into the complex vascular interactions within the tumor microenvironment, potentially transforming personalized cancer treatment approaches.

An interdisciplinary research team from Vanderbilt University (Nashville, TN, USA) has developed an innovative method using ultrafast power Doppler ultrasound to monitor tumor vasculature in real-time in two breast cancer models—metastatic and non-metastatic. By tracking changes in blood vessel networks, the researchers can now gain unprecedented insights into how tumors respond to radiation therapy. The ultrasound measurements revealed a consistent decrease in the tumor vascular index following radiation therapy, which correlated with a significant infiltration of CD8+ T cells into the tumors. These T cells are essential for the immune system’s defense against cancerous cells.

The team also observed an early increase in splenic CD8+ T cells after radiation. The spleen plays a crucial role in the activation and proliferation of these cells, which are vital in fighting blood-borne pathogens and cancerous cells. While the research is still in its early stages, it opens exciting possibilities for improving outcomes in the treatment of triple-negative breast cancer. Monitoring vascular changes to predict therapy responses and shifts in the immune landscape of the tumor may help enhance results for patients with limited treatment options.

“What sets this research apart is its ability to non-invasively track tumor changes that would be generally be detectable via biopsy or imaging methods that may not capture the full response. This ultrasound technique provides a window into a patient’s tumor response to treatment that may help inform clinical decisions more quickly,” said Shannon Martello, the paper’s lead author.

“The findings suggest that ultrafast power doppler ultrasound could become a crucial tool in personalizing cancer treatment. By providing accurate indicators of treatment effectiveness, clinicians may be able to tailor therapies more rapidly and precisely,” added Marjan Rafat, assistant professor of chemical and biomolecular engineering.


Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
NEW PRODUCT : SILICONE WASHING MACHINE TRAY COVER WITH VICOLAB SILICONE NET VICOLAB®
REGISTRED 682.9
X-Ray Meter
Cobia SENSE
Cardiograph Device
PageWriter TC35
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.