We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




New Insight into Rapid Evolution of AMR in Patients Calls for Shift in Diagnostic Testing Approaches

By HospiMedica International staff writers
Posted on 01 Aug 2023
Print article
Image: A study has revealed new mechanism for rapid evolution of multi-drug resistant infections in patients (Shutterstock)
Image: A study has revealed new mechanism for rapid evolution of multi-drug resistant infections in patients (Shutterstock)

A groundbreaking research study has offered novel insights into the development of antimicrobial resistance (AMR) in patients suffering from bacterial infections. This could lead to more effective preventative strategies against AMR infections in susceptible individuals. Contrary to the conventional belief that infection typically occurs due to a single strain of bacteria that develops resistance through new genetic mutations, the study suggests that patients often get co-infected by multiple clones of pathogens. In these cases, resistance arises from the selection of already resistant clones rather than new mutations.

In the study led by the University of Oxford (Oxford, UK), the researchers utilized an innovative technique to examine genetic alterations and antibiotic resistance in Pseudomonas aeruginosa, a common hospital-acquired bacterium, particularly among immunocompromised and severely ill individuals. Samples were taken from 35 patients in intensive care units across 12 European hospitals. Approximately two-thirds of the patients were found to be infected by a single strain of Pseudomonas, in some of which AMR developed due to new mutations, as traditionally believed. However, in a surprising revelation, one-third of patients were infected by multiple strains of the bacteria. It was observed that patients with mixed-strain infections exhibited a roughly 20% higher increase in resistance when exposed to antibiotic treatment compared to those with single-strain infections. The spike in resistance was primarily attributed to the selection of pre-existing resistant strains that already existed prior to antibiotic therapy.

Interestingly, the study also found that such resistance could decline rapidly under certain conditions. When samples from single-strain and mixed-strain infections were cultured without antibiotics, the growth rate of AMR strains was slower compared to non-AMR strains. This supports the idea that AMR genes carry fitness trade-offs and are negatively selected when antibiotics are absent. This effect was more pronounced in mixed strain populations, suggesting that a diverse bacterial environment could contribute to resistance loss in the absence of antibiotics.

The findings suggest that strategies focusing on controlling bacterial transmission among patients, such as improved sanitation and infection control measures, might be more effective against AMR compared to efforts to prevent new resistance mutations. This is particularly important in settings with a high infection rate, like immunocompromised individuals. Additionally, the study calls for a shift in clinical testing, emphasizing the importance of considering pathogen strain diversity instead of assuming a singular strain during infection assessments. This approach could aid in making more accurate predictions about antibiotic treatment effectiveness and improve patient outcomes, similar to the use of diversity measurements in cancer cell populations to predict chemotherapy success.

"The diagnostic methods employed for assessing antibiotic resistance in patient samples have undergone slow evolution over time, and our findings highlight the significance of developing new diagnostic approaches that facilitate the assessment of pathogen population diversity in patient samples," said Professor Craig Maclean, the lead researcher from the University of Oxford's Department of Biology.

Related Links:
University of Oxford 

Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Infrared Digital Thermometer
R1B1
Imaging Table
Stille imagiQ2

Print article

Channels

Surgical Techniques

view channel
Image: Miniaturized electric generators based on hydrogels for use in biomedical devices (Photo courtesy of HKU)

Hydrogel-Based Miniaturized Electric Generators to Power Biomedical Devices

The development of engineered devices that can harvest and convert the mechanical motion of the human body into electricity is essential for powering bioelectronic devices. This mechanoelectrical energy... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.