We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




Ultra-Thin Microcatheter with Fiber Optic Sensors a Game Changer in Heart Disease Detection

By HospiMedica International staff writers
Posted on 20 Jul 2023
Print article
Image: A new diagnostic technology uses tiny fiber optic sensors to detect causes of heart disease (Photo courtesy of UCL)
Image: A new diagnostic technology uses tiny fiber optic sensors to detect causes of heart disease (Photo courtesy of UCL)

There is growing evidence that points to the importance of accurate assessments of the coronary microvasculature (the constriction of the smallest heart vessels) in tailoring heart disease therapies. This is especially relevant for women and diabetic patients who are more susceptible to microvascular dysfunction. Accurate information about a person's heart health can enable doctors to make more informed treatment decisions, such as prescribing medication, deciding on surgical intervention, or discontinuing medication. However, traditional X-rays (angiograms) used by cardiologists to image the heart's larger arteries do not adequately display these tiny blood vessels. Consequently, the current clinical practice may lead to overdiagnosis, resulting in potentially unnecessary invasive procedures such as stent insertion, which carry risks and require recovery time. Now, a new diagnostic technology uses tiny fiber optic sensors to detect the causes of heart disease, more quickly and accurately than existing methods.

Scientists at University College London (UCL, London, UK) have developed a new device named iKOr that uses an ultra-thin microcatheter integrated with fiber optic sensors, enabling doctors to examine both blood pressure and blood flow around the heart as well as identify signs of artery narrowing and thickening, common indicators of heart disease. The slimline probe is especially suitable for detecting microvasculature. The iKOr device incorporates a temperature and pressure sensor merely 0.2mm wide — twice the thickness of a human hair — which is inserted through the patient's blood vessels on an ultra-thin catheter.

The iKOr device measures the flow rate around the heart by emitting a brief pulse of light upstream of the vessels being investigated, thereby slightly warming the blood by approximately one degree. The sensor records the time taken for the downstream temperature change, allowing the device to determine whether the flow is being obstructed by the narrowing of vessels. However, before the device can gain widespread use by doctors, researchers must verify its safe and easy application in patients. Initial patient tests confirm its safety, ease of use, and functionality. These will be followed by a more extensive clinical trial to further confirm the device's safety and superior performance compared to existing tests. Researchers suggest that the iKOr device could potentially assist numerous patients experiencing cardiovascular symptoms like chest pains, whose cause remains unidentified by current techniques.

“The iKOr device is responding to a clinical need – to significantly improve how blood flow in the heart is measured,” said lead iKOr developer, Professor Adrien Desjardins from the UCL Medical Physics & Biomedical Engineering. “Our microcatheter provides concurrent pressure and flow measurements from inside coronary arteries – this is unique and makes the tiny blood vessels more measurable, compared to traditional X-rays. This will help to significantly improve diagnosis and treatment for a large group of patients; those with obstructive coronary artery disease and coronary microvascular dysfunction.”

Related Links:
UCL

Platinum Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
Temperature Monitor
ThermoScan Temperature Monitoring Unit
Morcellator
TCM 3000 BL
Infant Resuscitator
Easypuff

Print article

Channels

Surgical Techniques

view channel
Image: Miniaturized electric generators based on hydrogels for use in biomedical devices (Photo courtesy of HKU)

Hydrogel-Based Miniaturized Electric Generators to Power Biomedical Devices

The development of engineered devices that can harvest and convert the mechanical motion of the human body into electricity is essential for powering bioelectronic devices. This mechanoelectrical energy... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.