We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




AI-Powered Intelligent Stethoscope to Improve Management of Respiratory Diseases

By HospiMedica International staff writers
Posted on 13 Jun 2023
Print article
Image: The DeepBreath AI algorithm uses deep learning to identify respiratory disease (Photo courtesy of EPFL)
Image: The DeepBreath AI algorithm uses deep learning to identify respiratory disease (Photo courtesy of EPFL)

The distinctive whooshing sound made by air traversing the intricate network of tiny lung passageways changes significantly when those channels are affected by asthmatic inflammation or blocked by bronchitis-associated secretions. The process of listening to these sound changes using a stethoscope—known as auscultation—is an indispensable part of nearly every health examination. Despite over 200 years of stethoscope usage, the interpretation of auscultation remains largely subjective, with different physicians often hearing varying sounds. The accuracy also varies based on the healthcare provider's experience and area of specialization. These complexities present an ideal opportunity for deep learning, which could offer a more objective interpretation of audio patterns. Deep learning has already proven its worth in augmenting human interpretation of complex medical tests like X-rays and MRI scans.

Now, a team of researchers at EPFL (Lausanne, Switzerland) and University Hospital Geneva (HUG, Geneva, Switzerland) has developed an intelligent stethoscope, Pneumoscope, that is powered by a novel AI algorithm - DeepBreath. The breakthrough tool holds promise in enhancing the management of respiratory diseases, especially in resource-limited and remote locations. The algorithm was trained using patient data from Switzerland and Brazil, and then validated using recordings from Senegal, Cameroon, and Morocco, thus offering insights into its geographic adaptability. In a study, the AI algorithm, DeepBreath, demonstrated how automated interpretation could revolutionize respiratory disease diagnosis. About 600 pediatric outpatients from five countries (Switzerland, Brazil, Senegal, Cameroon, Morocco) participated in the study, with the focus being on the three most common types of respiratory disease - pneumonia confirmed by radiography, and clinically diagnosed bronchiolitis and asthma. Despite the small patient cohort, DeepBreath demonstrated an impressive performance across various locations, signifying the potential for further improvement with more data.

A significant contribution of the study was the use of additional methods to understand the inner workings of the algorithm’s “black box”. The research team successfully showed that the model indeed relied on the breathing cycle for its predictions and highlighted the most important parts. By confirming that the algorithm genuinely uses breath sounds rather than biased signatures in the background noise—termed as "cheating"— the study fills a crucial void in current literature and increases confidence in the algorithm. The multidisciplinary team is now focusing on preparing the algorithm for real-world deployment in the Pneumoscope. The next substantial step involves repeating the study with a larger patient pool, using recordings from this newly developed digital stethoscope that also captures temperature and blood oxygen levels.

“Respiratory disease is the number one cause of preventable death in this age group,” explained Professor Alain Gervaix, Head of the Department of Pediatric Medicine at HUG. “This work is a perfect example of a successful collaboration between HUG and EPFL, between clinical studies and basic science. The DeepBreath-powered Pneumoscope is a breakthrough innovation for the diagnosis and management of respiratory diseases.”

Related Links:
EPFL 
HUG 

Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
12-Channel ECG
CM1200B
Autoclave
Advance
OR Table Accessory
Angular Accessory Rail

Print article

Channels

Surgical Techniques

view channel
Image: Miniaturized electric generators based on hydrogels for use in biomedical devices (Photo courtesy of HKU)

Hydrogel-Based Miniaturized Electric Generators to Power Biomedical Devices

The development of engineered devices that can harvest and convert the mechanical motion of the human body into electricity is essential for powering bioelectronic devices. This mechanoelectrical energy... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.