We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




AI-Based Approach to Image Reconstruction Provides Faster and Clearer MRI Scans

By HospiMedica International staff writers
Posted on 28 Aug 2018
Researchers from the Massachusetts General Hospital (MGH) Martinos Center for Biomedical Imaging (Charlestown, MA, USA) and Harvard University (Cambridge, MA, USA) have used artificial intelligence to develop a new type of medical imaging technology called AUTOMAP, which produces higher-quality images from less information. More...
This cuts down the amount of radiation from CT and PET scans, thus reducing the duration of an MRI scan. The research was funded by the National Institute for Biomedical Imaging and Bioengineering (NIBIB).

AUTOMAP uses machine learning and software, referred to as neural networks — inspired by the brain’s ability to process information and perceive or make choices. It churns through—and learns from—data from existing images and applies mathematical approaches in reconstructing new ones. AUTOMAP finds the best computational strategies to produce clear, accurate images for various types of medical scans.

For their study, the researchers used a set of 50,000 MRI brain scans from the NIH-supported Human Connectome Project to train the AUTOMAP system to reconstruct images and successfully demonstrated improvements in reducing noise and reconstruction artifacts as compared to the existing methods. The researchers found that the AUTOMAP system could produce brain MRI images with better signal and less noise than conventional MRI techniques.

“The signal-to-noise ratio improvements we gain from this artificial intelligence-based method directly accelerates image acquisition on low-field MRI,” said lead author Bo Zhu, Ph.D., postdoctoral research fellow in radiology at Harvard Medical School and in physics at the MGH Martinos Center.

“This technology could become a game changer, as mainstream approaches to improving the signal-to-noise ratio rely heavily on expensive MRI hardware or on prolonged scan times,” said Shumin Wang, Ph.D., director of the NIBIB program in Magnetic Resonance Imaging. “It may also be advantageous for other significant MRI applications that have been plagued by low signal-to-noise ratio for decades, such as multi-nuclear spectroscopy.”

Related Links:
Massachusetts General Hospital Martinos Center for Biomedical Imaging
Harvard University


Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
Heavy-Duty Wheelchair Scale
6495 Stationary
Digital X-Ray Detector Panel
Acuity G4
External Defibrillator
HeartSave Y | YA
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Miniaturized electric generators based on hydrogels for use in biomedical devices (Photo courtesy of HKU)

Hydrogel-Based Miniaturized Electric Generators to Power Biomedical Devices

The development of engineered devices that can harvest and convert the mechanical motion of the human body into electricity is essential for powering bioelectronic devices. This mechanoelectrical energy... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.