We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




New AI Algorithm Makes Liver Cancer Surgery Safer

By HospiMedica International staff writers
Posted on 07 Jun 2018
Researchers at the Fraunhofer Institute for Medical Image Computing MEVIS (Bremen, Germany) have developed algorithms that analyze patients’ imaging data and calculate surgical risks, making liver cancer surgery safer and easier to plan. More...
Researchers at Fraunhofer have been working on image-processing algorithms for use in medicine since 1998. The method is now widely known among physicians as MEVIS analysis and has become established in practice.

Surgery continues to offer the best chance of recovery among patients with liver cancer or those with liver metastases caused by other cancers. However, the complex, entangled human vascular anatomy makes it difficult to reconstruct mentally based on CT or MRI images alone. The new software analyzes a patient’s radiological images, and generates a detailed three-dimensional model of the liver and its vascular systems. It calculates the supply and drainage areas of the blood vessels and helps to determine the risks of possible tumors resection strategies. The information can be used by surgeons to prepare their surgery accurately by planning the optimal resection virtually. The analysis of vascular anatomy in the vicinity of the tumor also helps locate critical sections of the planned procedure. The surgeon receives a risk map of the resection path and knows where there is little room for deviations from the optimal cutting plane, such as where the planned resection corridor is particularly narrow.

The researchers have also developed an iPad app that combines the planning data with augmented reality. When the doctor turns on the iPad camera and directs it at the patient’s liver, the three-dimensional image of the patient’s liver, previously generated using the algorithms, is superimposed onto the image of the camera and shows the position of the blood vessels and tumors beneath the liver surface.

According to studies, liver surgery is more efficient and safer with the MEVIS analysis. Additionally blood loss can also be reduced. In some cases, the analysis algorithms allow surgeons to safely perform even delicate operations, which would have been considered too risky without the software. The software also generates suggestions for performing resections. "However, these are only proposals. Ultimately, the decision has to be made by the surgeon," said Dr. Andrea Schenk, Head of Liver Research at the Fraunhofer MEVIS.

Related Links:
Fraunhofer Institute for Medical Image Computing MEVIS


Platinum Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
Enteral Feeding Pump
SENTINELplus
Morcellator
TCM 3000 BL
OR Table Accessory
Angular Accessory Rail
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Miniaturized electric generators based on hydrogels for use in biomedical devices (Photo courtesy of HKU)

Hydrogel-Based Miniaturized Electric Generators to Power Biomedical Devices

The development of engineered devices that can harvest and convert the mechanical motion of the human body into electricity is essential for powering bioelectronic devices. This mechanoelectrical energy... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.