We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




Algorithm Outperforms Radiologists in Detecting Pneumonia on X-Rays

By HospiMedica International staff writers
Posted on 21 Nov 2017
A deep learning algorithm developed by researchers from the Stanford University (Stanford, CA, USA) that evaluates chest X-rays for signs of disease has outperformed expert radiologists at diagnosing pneumonia in just over a month of its development. More...
A paper about the algorithm named CheXNet, which can diagnose up to 14 types of medical conditions, was published November 14 on the open-access, scientific preprint website arXiv.

Soon after the National Institutes of Health Clinical Center recently released a public dataset containing 112,120 frontal-view chest X-ray images labeled with up to 14 possible pathologies, the Machine Learning Group at Stanford began developing an algorithm that could automatically diagnose the pathologies. Meanwhile, four Stanford radiologists independently annotated 420 of the images for possible indications of pneumonia. Within a week the researchers had developed an algorithm that diagnosed 10 of the pathologies labeled in the X-rays more accurately than the previous state-of-the-art results. In just over a month, CheXNet could beat these standards in all 14 identification tasks and also outperformed the four individual Stanford radiologists in pneumonia diagnoses.

The Stanford researchers have also developed a computer-based tool that produces what appears to be a heat map of chest X-rays, although instead of representing temperature, the colors of these maps represent the areas determined by the algorithm as the ones most likely to represent pneumonia. The tool could help reduce the amount of missed pneumonia cases and significantly accelerate the workflow of radiologists by indicating where to look first, resulting in faster diagnoses for the sickest patients.

“We plan to continue building and improving upon medical algorithms that can automatically detect abnormalities and we hope to make high-quality, anonymized medical datasets publicly available for others to work on similar problems,” said Jeremy Irvin, a graduate student in the Machine Learning group and co-lead author of the paper. “There is massive potential for machine learning to improve the current health care system, and we want to continue to be at the forefront of innovation in the field.”

Related Links:
Stanford University


Platinum Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
Electrode Solution and Skin Prep
Signaspray
Xenon Light Source
CLV-S400
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Miniaturized electric generators based on hydrogels for use in biomedical devices (Photo courtesy of HKU)

Hydrogel-Based Miniaturized Electric Generators to Power Biomedical Devices

The development of engineered devices that can harvest and convert the mechanical motion of the human body into electricity is essential for powering bioelectronic devices. This mechanoelectrical energy... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.